# Different SH groups involved in H<sup>+</sup> translocation and PP<sub>i</sub> hydrolysis of higher plant Mg<sup>2+</sup>-PP<sub>i</sub>ase

### Reinhold Verstappen and Thomas Rausch

Botanisches Institut, Johann Wolfgang Goethe Universität, Siesmayerstr, 70, D-6000 Frankfurt, FRG

## Received 16 June 1988

SH groups of the K<sup>+</sup>-stimulated, H<sup>+</sup>-translocating higher plant Mg<sup>2+</sup> pyrophosphatase (Mg<sup>2+</sup>-PP<sub>i</sub>ase) are functionally characterized. A pretreatment with 50  $\mu$ M N-ethylmaleimide (NEM) in the absence of Mg<sup>2+</sup> leads to about 50% inactivation of subsequent Mg<sup>2+</sup>-PP<sub>i</sub>-dependent H<sup>+</sup>-pumping, whereas in the presence of Mg<sup>2+</sup> no inactivation occurs. However, when PP<sub>i</sub> and Mg<sup>2+</sup> are present during the NEM pretreatment a 50% inhibition of the subsequent H<sup>+</sup>-pumping rate is observed. In the presence of Mg<sup>2+</sup> and the competitive inhibitor imidodiphosphate (IDP), the NEM pretreatment does not cause inactivation, indicating that this NEM-sensitive SH group only becomes exposed during the catalytic cycle. Conversely, PP<sub>i</sub> hydrolysis is only slightly inhibited by the 50  $\mu$ M NEM pretreatment, and Mg<sup>2+</sup>-PP<sub>i</sub> as well as Mg<sup>2+</sup>-IDP protect PP<sub>i</sub> hydrolyzing activity against NEM inactivation. The results demonstrate the presence of different SH groups involved in PP<sub>i</sub> hydrolysis and H<sup>+</sup> translocation.

Mg<sup>2+</sup> pyrophosphatase; Enzyme conformation; SH group; Mg<sup>2+</sup>; Imidodiphosphate; (*Nicotiana tabacum*)

#### 1. INTRODUCTION

The H<sup>+</sup>-translocating Mg<sup>2+</sup> pyrophosphatase (Mg<sup>2+</sup>-PP<sub>i</sub>ase) of the tonoplast and Golgi membranes has been partially characterized for a number of plant species [1-10]. The enzyme (pH optimum at 8;  $K_{\rm m}$  (PP<sub>i</sub>) 15-60  $\mu$ M in the presence of excess  $Mg^{2+}$  [3-5,10]) is dependent on  $K^+$  and is inhibited by Na<sup>+</sup> [3-5,9,10]. N-Ethylmaleimide 7-chloro-4-nitrobenzo-2-oxa-1,3 and (NEM) diazole (NBD-C1) inhibit the Mg<sup>2+</sup>-PP<sub>i</sub>ase [1,3,8,10] indicating the presence of (an) essential SH group(s). The lower sensitivity towards dicyclohexylcarbodiimide (DCCD) suggests a different structure of the H<sup>+</sup>-translocating portion of this enzyme as compared to other H<sup>+</sup> pumps [10]. Recently, Malsowski and Malsowska [11] have claimed the isolation of an H<sup>+</sup>-translocating Mg<sup>2+</sup>-PP<sub>i</sub>ase from corn by affinity chromatography; on SDS gels they found only one polypep-

Correspondence address: R. Verstappen, Botanisches Institut, Johann Wolfgang Goethe Universität, Siesmayerstr. 70, D-6000 Frankfurt, FRG

tide of 64 kDa but an unequivocal identification was not presented.

The present study addresses the question K<sup>+</sup>-stimulated higher Mg<sup>2+</sup>-PP<sub>i</sub>ase has different SH groups involved in H<sup>+</sup> translocation and PP<sub>i</sub> hydrolysis. For this purpose the competitive inhibition of the enzyme by the substrate analogue imidodiphosphate (IDP) [1] is characterized to demonstrate its possible use as a reagent to protect the Mg<sup>2+</sup>-PP<sub>i</sub>-binding site from inactivation by NEM. The effect of an NEM pretreatment in the presence or absence of Mg<sup>2+</sup>, PPi, or IDP (or combinations of these) on subsequent H<sup>+</sup> translocation and PP<sub>i</sub> hydrolysis shows that (i) different SH groups are involved in both functions, and (ii) under appropriate conditions a selective labelling of the enzyme with NEM may be possible.

#### 2. MATERIALS AND METHODS

#### 2.1. Plant material

The Agrobacterium tumefaciens-transformed Nicotiana tabacum cell clone (SR 1-C58) used in this study was a gift from

Professor H. Van Onckelen, Antwerp, and is described elsewhere [12,13]. The transformed cell suspension culture was cultivated in the dark according to Rausch and Ranostaj [14].

#### 2.2. Isolation of membranes

Cells were extracted at 4°C in a Moulinex blender with 2 ml buffer/g fresh weight: 250 mM sucrose, 100 mM Mops, 50 mM KCl, 10 mM EGTA, 20 mM ascorbic acid, 2.5 mM DTT, 0.1% (w/v) BSA, adjusted to pH 7.2 with KOH. A  $20\,000-50\,000\times g$  microsomal membrane fraction was prepared as described earlier [151.

#### 2.3. H<sup>+</sup>-pumping assay

The assay medium contained 300 mM sucrose, 10 mM Hepes, 20 mM ascorbic acid, 50 mM KCl, 2.5 mM DTT, 1 mM MgSO<sub>4</sub>, 0.1% (w/v) BSA, adjusted to pH 7.2 with KOH. Acridine orange (final concentration 5  $\mu$ M) fluorescence (excitation, 495 nm; emission, 540 nm) was always adjusted to the same initial value by diluting with buffer. Membranes (final concentration 35  $\mu$ g protein/ml) were allowed to equilibrate to room temperature. The reaction was started by adding PP<sub>i</sub> and monitored in an FP 770 Jasco spectrofluorometer.

#### 2.4. $Mg^{2+}$ -PP<sub>i</sub>ase assay

 $K^+$ -dependent  $Mg^{2+}$ - $PP_i$  as activity was determined as  $P_i$  release according to Cross et al. [16] with the exception that ascorbic acid (1%, w/v, final concentration) was used as reductant instead of FeSQ<sub>4</sub>·7H<sub>2</sub>O.

#### 2.5. Pretreatment of membranes

Membranes were washed in extraction buffer without DTT. After resuspending in the same medium they were divided into aliquots (membrane concentration 1200  $\mu$ g protein/ml) for the different treatments. Incubations with NEM and/or other additions were done at room temperature for 15 min. The pretreatment was stopped by ten-fold dilution in ice-cold extraction buffer (without DTT). The membranes were pelleted twice at  $50\,000 \times g$  for 45 min and then frozen in liquid N<sub>2</sub> and stored until use.

#### 2.6. Treatment of data

Kinetic data for  $K_m$  or  $K_i$  determinations were obtained from 2 or 3 independent experiments by regression analysis using the Lineweaver-Burk plot. Results of  $Mg^{2+}$ -PP<sub>i</sub>ase and  $Mg^{2+}$ -PP<sub>i</sub>-driven H<sup>+</sup> pumping after membrane pretreatments are means of 3 independent experiments. Standard error of the mean did not exceed 10%.

#### 3. RESULTS

# 3.1. Properties of the Mg<sup>2+</sup>-PP<sub>i</sub>ase

The microsomal membrane bound enzyme was  $K^+$ -stimulated ( $K_m(K^+)$  15 mM), had its pH optimum at 8, and a  $K_m$  for PP<sub>i</sub> (in the presence of 1 mM Mg<sup>2+</sup>) of 33  $\mu$ M (not shown). The time course of H<sup>+</sup> translocation as monitored with acridine orange is shown in fig.1; the initial decrease of fluorescence was linear with time for about 6 min

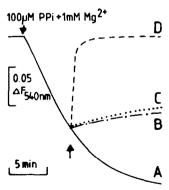



Fig.1. Time course of Mg<sup>2+</sup>-PP<sub>i</sub>-dependent H<sup>+</sup> pumping in microsomal vesicles from A. tumefaciens-transformed tobacco cells (SR 1-C58) as determined by acridine fluorescence quenching (membrane protein: 35 μg/ml). (A) Control; (B) inhibition of H<sup>+</sup> pumping by 5 mM EDTA; (C) inhibition of H<sup>+</sup> pumping by 100 μM imidodiphosphate (IDP); (D) reversal of acidification by 2.5 μM gramicidin. Time of addition of EDTA, IDP, or gramicidin is indicated by an arrow.

and proportional to membrane concentration. The  $V_{\rm max}$  of initial H<sup>+</sup> pumping was dependent on culture age, light and hormone status, but the  $K_{\rm m}$  for PP<sub>i</sub> remained fairly constant (R.V. and T.R., in preparation).

#### 3.2. Inhibition by IDP

The Mg<sup>2+</sup>-PP<sub>i</sub>ase was drastically inhibited by IDP as determined by the effect on H<sup>+</sup> transloca-

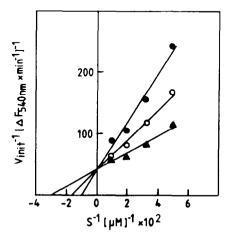



Fig.2. Kinetics of IDP inhibition of  $Mg^{2+}$ -PP<sub>i</sub>-driven H<sup>+</sup> pumping (membrane protein: 35  $\mu$ g/ml) presented in the Lineweaver-Burk plot. Total  $Mg^{2+}$  was always 1 mM, PP<sub>i</sub> was varied between 20 and 100  $\mu$ M. ( $\triangle$ ) Control; ( $\bigcirc$ ) plus 2.5  $\mu$ M IDP; ( $\bigcirc$ ) plus 5  $\mu$ M IDP.

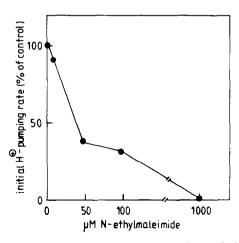



Fig. 3. Concentration dependence of the effect of the N-ethylmaleimide (NEM) pretreatment (15 min at 25°C; membrane protein 1200  $\mu$ g/ml) on subsequent H<sup>+</sup> pumping at 100  $\mu$ M PP<sub>i</sub> and 1 mM Mg<sup>2+</sup> in the absence of NEM (membrane protein 30  $\mu$ g/ml).

tion (fig.2). IDP did not affect passive H<sup>+</sup> conductivity as judged from a comparison with EDTA when being added to acidified vesicles (fig.1). Substrate kinetics of the IDP inhibition of  $Mg^{2+}$ -PP<sub>i</sub>ase demonstrated a competitive type with an apparent  $K_i$  value of 1.1  $\mu$ M.

# 3.3. Inhibition by NEM pretreatment plus or minus Mg<sup>2+</sup>, IDP, and PP;

First the effect of different NEM concentrations (in the absence of DTT) during a 15 min pretreatment on subsequent H<sup>+</sup> pumping of washed membranes was determined (fig.3). Half-maximum inhibition was observed at about 50 µM NEM. This concentration was used for the following experiments. Table 1 shows the effect of NEM pretreatments plus or minus Mg<sup>2+</sup> in the absence or presence of PP<sub>i</sub> (1 mM) or IDP (100 µM). While the presence of Mg<sup>2+</sup> protects the enzyme from inhibition by NEM, the simultaneous presence of the substrate PP<sub>i</sub> leads to the same inhibition as found for PP<sub>i</sub> alone; with 5 mM Mg<sup>2+</sup> and 1 mM PP<sub>i</sub> the same inhibition was observed (not shown). However, in the presence of Mg<sup>2+</sup> plus IDP the H<sup>+</sup>-translocation activity was even higher than in the control, whereas with IDP alone the inhibition by NEM was about the same as found for PP<sub>i</sub>. The apparent stimulation by IDP plus Mg2+ over the control was of the same magnitude as the one observed for DTT.

In contrast to these results  $PP_i$  hydrolysis was much less inhibited by the NEM pretreatment, irrespective of the absence or presence of  $Mg^{2+}$ ,

 $Table\ I$  Effects of the N-ethylmaleimide pretreatment on subsequent  $Mg^{2+}$ - $PP_i$ ase-driven  $H^+$  translocation and  $K^+$ -stimulated  $PP_i$  hydrolysis

| Pretreatment                                                   | Initial H <sup>+</sup> -pumping rate   |              | K+-stimulated PPi hydrolysis |              |
|----------------------------------------------------------------|----------------------------------------|--------------|------------------------------|--------------|
|                                                                | $\Delta F_{540 \text{ nm}}/\text{min}$ | % of control | nmol PP;<br>min×mg protein   | % of control |
| Control                                                        | 0.021                                  | 100          | 55                           | 100          |
| 2.5 mM DTT                                                     | 0.027                                  | 133          | n.d.                         |              |
| 50 μM NEM                                                      | 0.010                                  | 47           | 50                           | 90           |
| 50 μM NEM +<br>1 mM Mg <sup>2+</sup>                           | 0.023                                  | 106          | 51                           | 93           |
| 50 μM NEM +<br>1 mM PP <sub>i</sub>                            | 0.011                                  | 52           | n.d.                         |              |
| 50 μM NEM +<br>100 μM IDP                                      | 0.010                                  | 47           | n.d.                         |              |
| 50 μM NEM +<br>1 mM Mg <sup>2+</sup> +<br>1 mM PP <sub>i</sub> | 0.009                                  | 43           | 70                           | 128          |
| 50 μM NEM +<br>1 mM Mg <sup>2+</sup> +<br>100 μM IDP           | 0.027                                  | 130          | 69                           | 126          |

After a 15 min pretreatment membranes were washed and PP<sub>i</sub> hydrolysis and H<sup>+</sup>-pumping activities were determined at  $200 \,\mu\text{M}$  PP<sub>i</sub>/1 mM Mg<sup>2+</sup> in the presence of 2.5 mM DTT. For the H<sup>+</sup>-pumping assays the membrane concentration was 30  $\mu$ g protein/ml. n.d., not determined

whereas 1 mM Mg<sup>2+</sup>-PP<sub>i</sub> did not only protect against the inhibition by NEM but increased PP<sub>i</sub>-hydrolyzing activity above the control (table 1), and the same effect was found for Mg<sup>2+</sup> plus IDP.

#### 4. DISCUSSION

The H<sup>+</sup>-translocating Mg<sup>2+</sup>-PP<sub>i</sub>ase in microsomal membranes from A. tumefaciens-transformed tobacco cells which was used as an experimental tool in our study has characteristics identical with those reported for other higher plant H<sup>+</sup>-Mg<sup>2+</sup>-PP<sub>i</sub>ase [1-10]. The kinetics analysis of IDP inhibition (fig.2) in the presence of excess Mg<sup>2+</sup> together with the observation that IDP does not modify passive H<sup>+</sup> flux across the membrane (fig.1) shows that this competitive inhibitor may be used to specifically protect SH groups at the Mg<sup>2+</sup>-PP<sub>i</sub>-binding site without supporting H<sup>+</sup> translocation.

The differential effect of a 50 µM NEM pretreatment on subsequent PPi hydrolysis and H+ translocation (table 1) indicates that different SH groups are involved in Mg<sup>2+</sup>-PP<sub>i</sub>-driven H<sup>+</sup> transport. While NEM pretreatment inhibits H<sup>+</sup> pumping by about 50%, PP<sub>i</sub> hydrolysis is reduced by not more than 15%. The substrate Mg<sup>2+</sup>-PP<sub>i</sub> does not protect the H+-pumping activity from NEM inhibition, but it does so for PP<sub>i</sub> hydrolysis; it even leads, like 100 µM IDP in the presence of 1 mM Mg2+, to an increase of subsequent PPi hydrolysis above the control incubation. This observation as well as the DTT effect on H<sup>+</sup> pumping suggest that in the control incubation some inactivation of the Mg<sup>2+</sup>-PP<sub>i</sub>ase occurs at the substrate-binding site. Mg<sup>2+</sup> alone protects against the NEM inhibition of H<sup>+</sup> pumping, but as it does not lead to a significant increase above the control treatment (as observed for the competitive inhibitor Mg<sup>2+</sup>-IDP) it is obvious that Mg<sup>2+</sup> exerts its effect not at the Mg2+-PPi-binding site.

The combined data may be rationalized by assuming at least two SH groups, one (A) localized at the Mg<sup>2+</sup>-PP<sub>i</sub>-binding site, the other (B) exposed during the H<sup>+</sup>-translocation step. After an NEM plus Mg<sup>2+</sup>-PP<sub>i</sub> pretreatment PP<sub>i</sub> hydrolysis would proceed uncoupled from the H<sup>+</sup> translocation. The fact that Mg<sup>2+</sup> on its own protects against NEM inhibition indicates a change in enzyme conformation with SH group B not accessible to NEM.

The following equations summarize the assumed reaction sequence:

$$E_r + Mg^{2+} \rightleftharpoons E_t Mg^{2+} \tag{1}$$

$$E_{i}Mg^{2+} + Mg^{2+} - PP_{i} \Longrightarrow E_{i'}Mg^{2+} \cdot Mg^{2+} - PP_{i}$$
 (2)

$$E_{t}Mg^{2+} \cdot Mg^{2+} \rightleftharpoons E_{t}Mg^{2+} + Mg^{2+} + 2 P_{t}$$
 (3)

where eqn 1 represents the formation of the  $Mg^{2+}$ -activated enzyme ( $E_r$ , enzyme relaxed;  $E_t$ , enzyme tense), eqn 2 the formation of the enzyme-substrate complex, and eqn 3 the splitting of the  $PP_i$  bond normally coupled to the  $H^+$ -translocation step. SH-group B would be exposed only in  $E_r$  and  $E_{t'}Mg^{2+}\cdot Mg^{2+}-PP_i$ .

Wang et al. [10] reported a rather significant inhibition of PP; hydrolysis by NEM, which seems to contradict our results; however, the NEM inhibition is also dependent on the absolute NEM/membrane ratio and in our study membrane concentration during the NEM pretreatment was rather high (1200 µg protein/ml). The results indicate that SHgroup A is less sensitive to NEM inhibition than SH-group B. In agreement with this Takeshige et al. [17] recently showed that in the tonoplast of Chara corallina the Mg<sup>2+</sup>-PP<sub>i</sub>-driven H<sup>+</sup> pumping is almost 10 times more sensitive to NEM as compared to PP; hydrolysis. In NEM-inhibition assays at low membrane concentration we equally observed a stronger inhibition of PP; hydrolysis (not shown).

Knight et al. [18] demonstrated that the inorganic PP<sub>i</sub>ase from yeast has two Mg<sup>2+</sup>-binding sites one of which exhibits a very low  $K_i$  ( $\leq 1 \mu M$ ), while according to Barry and Dunaway-Mariano [19] the second Mg<sup>2+</sup> would bind after the binding of the substrate (which was Cr<sup>3+</sup> PP<sub>i</sub> in their study). Recently, Helmich-de Jong et al. [20] reported that the gastric mucosa (K<sup>+</sup> + H<sup>+</sup>)-ATPase showed a specific change in conformation after the addition of Mg<sup>2+</sup> as judged from the tryptic digestion pattern. Thus an Mg<sup>2+</sup>-induced change of conformation may be a more general feature of ion pumps.

We conclude that our data, besides demonstrating the presence of SH groups with different functions, will also provide the basis for the envisaged selective labelling of the plant H<sup>+</sup>-Mg<sup>2+</sup>-PP<sub>i</sub>ase with radioactive NEM which may help to identify the H<sup>+</sup>-Mg<sup>2+</sup>-PP<sub>i</sub>ase polypeptide(s).

Acknowledgement: The authors gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft.

#### **REFERENCES**

- Chanson, A., Fichmann, J., Spear, D. and Taiz, L. (1985)
  Plant Physiol. 79, 159-164.
- [2] Chanson, A. and Pilet, P.-E. (1987) Plant Physiol. 84, 1431-1436.
- [3] Macri, F. and Vianello, A. (1987) FEBS Lett. 215, 47-52.
- [4] Marquardt, G. and Lüttge, U. (1987) J. Plant Physiol. 129, 269-286.
- [5] Rea, P.A. and Poole, R.J. (1985) Plant Physiol. 77, 46-52.
- [6] Rea, P.A. and Pooler, R.J. (1986) Plant Physiol. 81, 126-129.
- [7] Shimmen, T. and MacRobbie, E.A.C. (1987) Plant Cell Physiol. 28, 1023-1031.
- [8] Wagner, G.J. and Mulready, P. (1983) Biochim. Biophys. Acta 728, 267-280.

- [9] Walker, R.R. and Leigh, R.A. (1981) Planta 153, 150-155.
- [10] Wang, Y., Leigh, R.A., Kaestner, K.H. and Sze, H. (1986) Plant Physiol. 81, 497-502.
- [11] Maslowski, P. and Maslowska, H. (1987) Biochem. Physiol. Pflanzen 182, 73-84.
- [12] Van Lijsebettens, M., Inze, D., Schell, J. and Van Montagu, M. (1986) J. Mol. Biol. 188, 129-145
- [13] Rüdelsheim, P., Prinsen, E., Van Lijsebettens, M., Inze, D., Van Montagu, M., De Greef, J. and Van Onckelen, H. (1987) Plant Cell Physiol. 28, 475-484.
- [14] Rausch, T. and Ranostaj, S. (1987) Plant Physiol., submitted.
- [15] Rausch, T., Ziemann-Roth, M. and Hilgenberg, W. (1985) Plant Physiol. 77, 881-885.
- [16] Cross, J.W., Briggs, W.R., Dohrmann, U.C. and Ray, P.M. (1978) Plant Physiol. 581-584.
- [17] Takeshige, K., Tazawa, M. and Hager, A.B. (1988) Plant Physiol. 86, 1168-1173.
- [18] Knight, W.B., Dunaway-Mariano, D., Ransom, S.C. and Villafranca, J.J. (1984) J. Biol. Chem. 259, 2886.
- [19] Barry, R.J. and Dunaway-Mariano, D. (1987) Arch. Biochem. Biophys. 259, 196-203.
- [20] Helmich-de Jong, S.E., Van Emst-de Vries, S.E. and De Pont, J.J.H.H.M. (1987) Biochim. Biophys. Acta 905, 358-370.